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Abstract When the DNA double helix is subjected to

external forces it can stretch elastically to elongations

reaching 100% of its natural length. These distortions,

imposed at the mesoscopic or macroscopic scales, have a

dramatic effect on electronic properties at the atomic scale

and on electrical transport along DNA. Accordingly, a

multiscale approach is necessary to capture the electronic

behavior of the stretched DNA helix. To construct such a

model, we begin with accurate density-functional-theory

calculations for electronic states in DNA bases and base

pairs in various relative configurations encountered in the

equilibrium and stretched forms. These results are com-

plemented by semi-empirical quantum mechanical calcu-

lations for the states of a small size [18 base pair

poly(CG)–poly(CG)] dry, neutral DNA sequence, using

previously published models for stretched DNA. The cal-

culated electronic states are then used to parametrize an

effective tight-binding model that can describe electron

hopping in the presence of environmental effects, such as

the presence of stray water molecules on the backbone or

structural features of the substrate. These effects introduce

disorder in the model hamiltonian which leads to electron

localization. The localization length is smaller by several

orders of magnitude in stretched DNA relative to that in the

unstretched structure.

Introduction

Soon after Watson and Crick’s discovery of the DNA

double-helix structure [1], Eley and Spivey [2] introduced

the notion of efficient charge transport along the stacked p
orbitals of the bases. The mechanism of charge transport

has been the subject of numerous studies in the intervening

years, with renewed interest fuelled recently by both bio-

logical and technological considerations. Over a decade

ago, Barton and co-workers observed distance-independent

charge transfer between DNA-intercalated transition-metal

complexes [3] and argued that it would be relevant for

biology and biotechnology. More recent electron transport

experiments on DNA have yielded widely varying results,

showing alternatively insulating behavior [4–8], semicon-

ducting behavior [9], Ohmic conductivity [10–13], and

proximity induced superconductivity [14]. The large

number of relevant variables endemic to such experiments,

like the DNA-electrode contact, and the rich variety of

structures that DNA can assume, are the causes of vari-

ability in the experimental measurements (for a recent

review of transport theory and experiments see Ref. [15]).
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Specifically, there is a large diversity of the DNA forms

in terms of its composition, length, and structure. Experi-

ments done long ago, suggested that DNA substantially

longer than its natural length (also referred to as ‘‘over-

stretched DNA’’) can undergo a transition to an elongated

structure up to twice the length of relaxed DNA [16]. This

was also confirmed by recent single molecule stretching

experiments [17–19], which showed that the molecule can

be reversibly stretched up to 90% of its natural length. Such

important deformations of the double helix may occur in

biological environments. Stretching of DNA is also related

to cellular processes, such as transcription and replication.

For example, proteins often induce important local distor-

tions in the double helix while they diffuse along the mol-

ecule in search of their target sequences. The electronic and

transport properties of DNA are directly influenced by its

different conformations as well as by environmental factors,

such as counterions, impurities or temperature. A full

account of these effects based on a realistic, atomic scale

description of the structure and the electronic properties

challenges the capabilities of theoretical models.

Theoretical efforts to understand the electronic behavior

and transport in DNA can be divided into two general

categories:

(i) Model calculations that use effective hamiltonians

and master equations to describe the dynamics of electrons

and holes in DNA (see, for instance, Refs. [20–23]). Recent

results [24] have led to considerable insights concerning

the sequence-independent delocalization of electronic

states in DNA. The main limitation of such approaches lies

in the difficulty of determining accurate values for the

parameters in the effective hamiltonians.

(ii) Ab initio calculations that can provide an accurate

and detailed description of the electronic features [25–27].

These approaches are typically limited to a small number

of atoms due to computational costs, and cannot readily

handle the full complexity of DNA molecules in various

conformations. In particular, stretching of DNA can induce

a very significant deviation from the B form which is stable

under normal conditions in aqueous solution. Such struc-

tural distortions are bound to have a profound effect on the

electronic behavior. A realistic description of these effects

makes it necessary to handle both the atomic scale features

and the overall state of the macromolecule.

In the present work, we address the problem of DNA

stretching effects on the electronic states and the electron

localization by providing a bridge between the two

extremes of the length scale; a similar methodology was

recently used to study hole transfer in DNA [28]. Theo-

retically, there are different ways of pulling the opposite

ends of the DNA strands, leading to different stretched

DNA forms, which are determined largely by base pair

reorientations. Here, we use the poly(CG)–poly(CG)

structures obtained in the pioneering study of Lebrun and

Lavery [29] as the representative structure for stretching

effects. This study modeled the adiabatic elongation of

selected DNA molecules in two modes of stretching, cor-

responding to pulling on opposite 3¢–3¢ ends or 5¢–5¢ ends

of the molecule: In the 3¢–3¢ stretching mode, the DNA

helix is unwound leading to a ribbon-like structure, while

in the 5¢–5¢ stretching mode the DNA helix contracts.

We begin with a set of detailed calculations for the

electronic structure of DNA bases (A,T,C,G) and repre-

sentative base pairs (AT-AT, CG-CG, AT-CG, CG-GC) in

various relative configurations, as they are likely to appear

in the stretched forms, These calculations are based on

density-functional theory [30, 31] and serve to set the stage

for more extensive calculations which employ successive

levels of approximations necessary to handle the compu-

tational demands. Specifically, we extract the salient fea-

tures of electronic structure of the individual DNA bases

and base pairs from the ab initio calculations; these are

compared to an efficient and realistic semi-empirical model

[32], in order to establish the validity of the latter approach.

At this intermediate scale, we consider an 18 base pair

poly(CG)–poly(CG) DNA sequence which has been stret-

ched by 30%, 60% and 90% relative to the natural length of

the unstretched B form. The atomic structure of these

forms has been established by Lebrun and Lavery [29],

using empirical interatomic potentials. We next use the

information from this approximate description to build an

effective hamiltonian for the electronic behavior at much

larger scales. This allows us to describe electron localiza-

tion, due to the combined effects of stretching and envi-

ronmental factors, over mesoscopic to macroscopic length

scales. The essence of the approach and the different scales

involved are shown schematically in Fig. 1. We emphasize

that we address here issues related only to dry and neutral

DNA structures, where the negatively charged groups on

the backbone are passivated by protons, conditions that are

relevant to the experiments we consider for comparison to

our theoretical results; water molecules or counterions

(such as Na+) are not considered in our calculations.

Theoretical methods

Ab initio calculations

As our first step toward establishing the electronic behavior

of dry, neutral DNA, we study the nature of electronic

states in individual bases and in base pairs. For these cal-

culations we used three different implementations of den-

sity-functional theory [30]: a method that uses atomic-like

orbitals as the basis [34], one that uses plane waves [35]

and a third that uses a real-space grid [36]. In all three
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approaches, we used the same exchange-correlation func-

tional in the local-density approximation [31], for consis-

tency and simplicity. More elaborate approximations to

exchange-correlation effects, such as the generalized gra-

dient approximation [37], do not provide any improvement

in describing the physics of these weakly interacting units.

In each method we used pseudopotentials to represent the

atomic cores, of the Trouiller-Martins type [38] in SIES-

TA, the Vanderbilt ultrasoft type [39] in VASP and the

Hammann–Schluter–Chiang type [40] in HARES, with

computational parameters (number of orbitals in basis,

plane-wave kinetic energy cutoff and grid spacing) that

ensure a high level of convergence. These calculations

provide a thorough check on the consistency of various

computational schemes to reproduce the electronic features

of interest. The results are in excellent agreement across

the three approaches. Since in these calculations there are

no adjustable parameters, we refer to them in the following

as ab initio results.

Construction of semi-empirical model

The stretched forms contain a large number of atoms,

typically beyond what can be efficiently treated with the

ab initio methods used for the DNA bases and base pairs.

Accordingly, for the electronic structure calculations of

these structures we use an efficient semi-empirical quan-

tum-mechanical approach which employs a minimal basis

set [32]. The consistency of this approach is then verified

against the ab initio calculations. Within the semi-

empirical scheme, the electronic eigenfunctions are

expressed as

jwðnÞi ¼
X

m

cðnÞm jumi ð1Þ

where the basis set |unæ includes the s and p atomic

orbitals for each atom in the system. The coefficients

c(n)
m are numerical constants, with |c(n)

m|
2 giving the

weight of orbital |unæ to the electronic wavefunction.

This method uses a second order expansion in the elec-

tronic density to obtain the total energy and takes into

account self-consistently charge transfer effects which

are important for biological systems. The method gives

results for the band gaps that are in excellent agreement

with those of the ab initio approaches described above

(see Refs. [5, 41]).

The highest occupied and lowest unoccupied molecular

orbitals (HOMO and LUMO, respectively, also referred

to collectively as ‘‘frontier states’’ in the following) are

extended over the entire structure in Bloch-like wave

functions. In order to describe electron hopping and

localization, we need to express these in terms of a basis of

Wannier-like states that are localized on the individual

bases. To this end, we construct maximally localized states

on single base pairs by taking linear combinations of the

HOMO and LUMO states from the wavefunctions of Eq. 1.

The maximally localized states will then be used to cal-

culate the hopping parameters in the effective 1D hamil-

tonian. Using the extended electronic states |w(n)æ of the

frontier states, with corresponding energies e(n), we define

the maximally localized states j~wðiÞi through the unitary

transformation

j~wðiÞi ¼
X

n

hwðnÞj~wðiÞijwðnÞi ð2Þ

which minimizes the sum of the variances

f ¼
X

i

h~wðiÞjẑ2j~wðiÞi � h~wðiÞjẑj~wðiÞi2
� �

ð3Þ

under the constraint h~wðiÞj~wðjÞi ¼ dijwhere z is the position

along the helical axis. Similar and more general

methodologies have been developed in the past for

obtaining maximally localized states from extended ones

[42, 43]. Due to the invariance of the trace, the first term in

Eq. 3 is independent of the unitary transformation and the

ab−initio
density

functional theory

semi−empirical
electronic
structure

1500 bp

effective
tight−binding
hamiltonian

1 bp

30

18 bp

100

10

1

nm

1130 atoms94000

Fig. 1 Schematic illustration of the different scales included in the

current multiscale model: The two pictures on the left are atomistic

systems simulated with different computational approaches (ab initio

density functional theory and semi-empirical electronic structure,

resprectively). The picture on the right represents a rope composed of

DNA molecules, as in experiments [33], which is treated by an

effective tight-binding hamiltonian constructed from the atomistic

scale calculations
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problem is simplified to one of maximizing the second term

on the right-hand side with the same orthonormality

constraint. Carrying out the minimization, we arrive at

the equation

h~wðnÞjẑj~wðmÞiðzn � zmÞ ¼ 0 ð4Þ

where

zn ¼ h~wðnÞjẑj~wðnÞi: ð5Þ

By inspection, we see that f is maximized when zn = zm

for all m and n, corresponding to maximally delocalized

states. On the other hand, f is minimized when the states

j~wðnÞi are the eigenfunctions of the position operator ẑ

within the HOMO or LUMO subspace. Therefore, the

problem is further reduced to constructing and diagonal-

izing the matrix

Mnm ¼ hwðnÞjẑjwðmÞi ð6Þ

which has the eigenvectors hwðnÞj~wðiÞi that provide the

desired transformation given in Eq. 2. The eigenvalues zn

are the positions of the localized states. To evaluate the

matrix elements we use the approximation

hwðnÞjẑjwðmÞi ¼
P
lm

c
ðnÞ�
l c

ðmÞ
m huljẑjumi

�
P
lm

c
ðnÞ�
l c

ðmÞ
m Slmzlm

ð7Þ

where Slm ¼ huljumi is the overlap matrix between the two

atomic orbitals and zlm ¼ zlþzm

2
is the average z-value for the

atoms located at sites given by the labels l and m. Once the

localized states are constructed, the hopping parameters

can be computed as

tij ¼ h~wðiÞjHj~wðjÞi ¼
X

n

eðnÞh~wðiÞjwðnÞihwðnÞj~wðjÞi ð8Þ

recalling that the quantities hwðnÞj~wðiÞi are determined from

the transformation described above.

Having defined the maximally localized states in terms

of the electronic wavefunctions from the all-atom calcu-

lations, we next produce an effective tight-binding hamil-

tonian, which allows us to study electron hopping along the

DNA double helix. This approach has also been used in a

recent study on functionalized carbon nanotubes [44]. In

our effective hamiltonian, we consider hopping between

first and second neighbors along the helix, and denote the

hopping matrix elements according to the scheme shown in

Fig. 2 for the HOMO state of the poly(CG)–poly(CG)

structure (all other frontier states involve exactly the same

type of hopping matrix elements):

H ¼ e
P

n
cyncn þ t1

P
n even

cyncnþ1 þ cynþ1cn

� �

þ t2
P

n odd

cyncnþ1 þ cynþ1cn

� �

þ t3
P
n

cyncnþ2 þ cynþ2cn

� �
ð9Þ

where n represents the nth base pair along the helical axis

and we have neglected spin indices because they are

unimportant for our analysis. Note that there is a difference

between hopping elements connecting even and odd sites

to their neighbors (t1 and t2 terms in the effective

hamiltonian of Eq. 9), due to the asymmetry in the

structure illustrated in Fig. 2. Performing a Fourier

transform on the electron creation and annihilation

operators

ck ¼
1ffiffiffiffi
N
p

X

n

e�ikncn ð10Þ

gives a hamiltonian which has coupling between momenta

k and k + p/a. By doubling the unit cell (and reducing the

Brillouin Zone by a factor of two), this can finally be

diagonalized to obtain the eigenvalues

E�k ¼ eþ 2t3 cosð2kÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2
1 þ t2

2 þ 2t1t2 cosð2kÞ
p

ð11Þ

with the momentum sum carried out over the reduced

Brillouin Zone. With these expressions for the band

structure energies, the density of states (DOS)

gðxÞ ¼ 1

N

X

k;n

dðx� E
ðnÞ
k Þ ð12Þ

can be readily obtained. These quantities are essential in

describing electron localization along the DNA double

helix under different conditions.

CG

C G

CG

GC

G C

(2)

(3)
(1)

Fig. 2 Schematic depiction of electron hopping in poly(CG)–

poly(CG) DNA for the HOMO state. The hopping matrix elements

ti are denoted by the indices (i) = (1), (2), (3). Electrons are localized

on the G bases. For the LUMO state, the hopping is similar with

electrons localized on the C bases
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Disorder and localization length

In order to quantify the amount of localization that is

expected in stretched DNA forms, we add a term to the

hamiltonian in Eq. 9 of the form

Hdis ¼
X

n

Uncyncn ð13Þ

which is meant to emulate disorder arising from a variety of

sources such as interaction of the DNA bases with stray water

molecules and ions, or interaction with the substrate. Un are

uncorrelated random energy variations chosen according to a

Gaussian distribution of zero mean and width c

PðUÞ ¼ 1

c
ffiffiffiffiffiffi
2p
p exp � U2

2c2

� �
: ð14Þ

Once the disorder hamiltonian is constructed with a specific

set of random on-site energies, by direct diagonalization we

find the eigenstates jWðiÞi of HþHdis(we use capital

symbols to denote the new wavefunctions from the

hamiltonian that includes the disorder term) and then

calculate the localization length defined as

Li ¼ hWðiÞjn̂2jWðiÞi � hWðiÞjn̂jWðiÞi2
h i1=2

ð15Þ

where n̂ is the position operator along the DNA helix

defined as:

n̂ ¼
X

n

ncyncn ð16Þ

For a single-hopping model with weak disorder, the

localization length scales as L ~ (t/c)2 for electrons near the

middle of the band [45], with t the hopping matrix element

which determines the band width. The more complicated

effective hamiltonian considered here is not amenable to

simple analytic treatment.

Results and discussion

We begin our discussion with an overview of electronic

states in single bases and isolated base pairs. The structure

of the base pairs is shown in Fig. 3 with the atoms in each

base labeled for future reference. These calculations will

set the stage for a proper interpretation of the behavior in

the stretched and unstretched dry, neutral DNA helix.

Frontier states

The frontier states in the base pairs are related to only one

component of the pair for both AT and CG. This is shown

in Fig. 4. Specifically, the HOMO state of the AT pair is

exactly the same as that of the HOMO state of the isolated

A, and the LUMO state of AT the same as that of the

isolated T. Similarly, the HOMO state of CG is identified

with that of the isolated G and the LUMO state with that of

Fig. 3 The DNA base pairs AT (top) and CG (bottom), with the

atoms labeled. The purines (A, G) are on the right, the pyrimidines (T,

C) on the left. Atom labeling follows standard notation convention

[46]. All rotations were performed with respect to the helical axis

denoted by the black circle (see text)

AT

CG

T

A

C

G

Fig. 4 The frontier states in the base pairs and their identification

with corresponding orbitals in the isolated bases. The middle figure in

each panel shows the total charge density on the plane of the base

pair, with higher values of the charge density in red and lower values

in blue. The figure on the left shows the HOMO state and the figure on

the right shows the LUMO state, where pink and light blue

isosurfaces correspond to positive and negative values of the

wavefunctions. The labels on the left denote the type of bases and

base pairs
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the isolated C. Thus, the purines (A or G) give rise to the

HOMO state, while the pyrimidines (T or C) are respon-

sible for the LUMO states of each pair. It is clear from the

same figure, that essentially all atomic pz orbitals which

belong to a purine or pyrimidine contribute to the respec-

tive HOMO or LUMO p state of the base pair. This is in

agreement with calculations on the optical absorption

spectra of DNA bases and base pairs [47]. A closer

inspection of Fig. 4 shows that the molecular frontier states

of both AT and CG can be identified as similar contribu-

tions (up to sign changes) from specific groups of carbon

and nitrogen atoms. Specifically, in the purines (A and G)

three distinct groups of atoms are mainly involved in

forming the HOMO orbital and include atoms (C8–N7),

(C2–N3) and (N1–C6–C5–C4–N9), respectively. In the

pyrimidines (T and C) the main groups involved in forming

the LUMO orbital are two, (C4–C5–N1) and (N3–N7–C6).

In both base pairs the atoms that are less involved in the

frontier molecular states are the carbon atoms that form a

double bond with an oxygen atom, such as C2 of A and C

and the four-fold bonded C7 atom of A.

The frontier states are very little affected when the two

components of the base-pair are separated along the

direction in which they are hydrogen-bonded. To demon-

strate this, we show in Fig. 5 the change in the eigenvalues

of the frontier states in AT and CG as a function of the

distance between the two atoms that are bonded to the two

backbones (we call this the backbone distance). For both

base pairs the nitrogen atoms labeled N1 and N9, are the

ones attached to the backbone (see Fig. 3). In order to

obtain realistic structures, for each value of the backbone

distance we hold the atoms of each base that are bonded to

the backbone fixed and allow all other atoms to relax fully.

These calculations were performed with the SIESTA code

[34] and the relaxed configurations were used as input to

calculate the electronic structure with the other two

methodologies [35, 36]. In Fig. 5 we show complete results

from the SIESTA calculations and selected results from

one of the other two approaches.

The results of Fig. 5 show clearly that only in the region

where the backbone distance becomes significantly smaller

than the equilibrium value, interaction between the two

bases shifts the eigenvalues of the electronic states appre-

ciably, but even then the shifts are relatively small for the

frontier states. It is also noteworthy that the band gap of the

AT pair is significantly larger (~3 eV) than that of the CG

pair (~2 eV) and that the frontier states of CG lie within the

band gap of the AT pair. This observation is important

because it indicates that in an arbitrary sequence of base

pairs, the frontier states will be associated with those of the

CG pairs. This statement is verified by calculations of

electronic states in the AT-AT, CG-CG and AT-CG base

pair combinations, to which we turn next.

For more detailed comparisons, we collect in Table 1

the eigenvalues of the frontier states for the DNA pairs and

the pair combinations, at different equilibrium configura-

tions in the three relevant variables, the backbone distance,

the axial distance and the rotation angle. Some results on

the CG-GC base pair combination are also shown, to allow

for comparison to the poly(C)–poly(G) sequence.

When two base pairs are stacked on top of each other,

there are two degrees of freedom for motion of one relative

to the other: a separation along the helical axis, which we

will call axial distance, and a relative rotation around the

helical axis. We take the helical axis to be that which

corresponds to stacking of successive base pairs in the B

form of the DNA double helix. According to the notation of

Fig. 3, the helical axis for both base-pairs is normal to the

line connecting atoms C4 and C6 and is closer (about one

third of their distance) to the purine atom C6. For each

configuration we fix the atoms that are bonded to the

backbone at a given relative position and allow all other

atoms to relax, as was done in the calculations involving

the backbone distance discussed above. In Fig. 6 we show

the behavior of electronic eigenvalues as a function of the

axial distance and the rotation angle. As above, the

eigenvalues show little dependence on these two variables,

except for rather small values of the axial distance which

correspond to unphysically small separation between the

two base pairs.

What is also remarkable in the above results, is that in

the AT-CG combination, the frontier states are clearly

identified with those corresponding to the CG pair exclu-

sively, which has the smaller band gap (see Fig. 6).

Moreover, we note that the band gap of the poly(C)–

poly(G) sequence, as calculated by the semi-empirical

7 8 9 10 11 7 8 9 10 11
backbone distance (Α)o

−2.5

0

2.5

ε  (
eV

)

backbone distance (Α)o

AT CG

T−LUMO C−LUMO

G−HOMO

A−HOMO

Fig. 5 Eigenvalues of states in the AT and CG base pairs as a

function of backbone distance. In each case three states are included

above and below the band gap. Lines are results from SIESTA

calculations, points are results from HARES calculations (see text).

The frontier orbitals in both pairs are related to one component of the

pair as indicated by the labels. The equilibrium backbone distance is

denoted by a vertical dashed line
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method based on a minimal atomic orbital basis [32] is in

excellent agreement with the value obtained from the

SIESTA calculation (2.0 eV and 2.1 eV, respectively). The

band gap is expected to be significantly smaller in the case

of wet DNA and in the presence of counterions, as shown

in Ref. [48], for a Z-DNA helix. The band gaps between all

three ab initio methods are identical within the accuracy of

these methods. The nature of electronic wavefunctions

obtained by the different methods is also in good qualita-

tive agreement. Accordingly, in the rest of this paper we

focus our attention to electron localization in the dry,

neutral poly(CG)–poly(CG) sequence, and employ the

results of the semi-empirical electronic structure method.

Hopping electrons

In Fig. 7, we show the unstretched and the three stretched

forms of the poly(CG)–poly(CG) sequences at 30%, 60%,

90% elongation, along with the features of the frontier

states. For visualization purposes, we represent the calcu-

lated wavefunction magnitude of the frontier states by blue

(HOMO) and red (LUMO) spheres, centered at the sites

where the atomic orbitals are located. The radius of the

sphere centered on a particular atom is proportional to the

magnitude of the dominant coefficient |c(n)
m|

2 at this site

(see Eq. 1), which is essentially proportional to the local

electronic density. It is evident from this figure that the

nature of the orbitals themselves, represented by the radii

of the colored spheres, does not change much in the dif-

ferent stretched DNA forms, but the overlap between

orbitals at neighboring bases is affected greatly by the

amount of stretching. For the poly(CG)–poly(CG)

sequence shown, the HOMO orbitals are always associated

Table 1 Eigenvalues (in eV) of

the frontier states for the DNA

base pairs and the base-pair

combinations, at the equilibrium

configurations for the backbone

distance, the axial distance (at

zero relative angle of rotation)

and the angle of rotation (at the

equilibrium axial distance)

The column labeled ‘‘min’’

gives the values of the distances

and the angle at the equilibrium

configurations. Due to

symmetry the values for the

minima at rotation angles larger

than 180� are similar to those

given here and are not shown

min HOMO LUMO gap

Backbone distance

AT 8.67 Å –1.63 1.60 3.23

CG 8.73 Å –0.80 1.31 2.11

Axial distance

AT-AT 3.67 Å –1.33 1.37 2.70

CG-CG 3.52 Å –0.46 1.95 1.41

AT-CG 3.36 Å –0.71 1.00 1.71

Rotation angle

AT-AT 36� –1.48 1.58 3.06

108� –1.45 1.68 3.13

180� –1.55 1.63 3.18

CG-CG 36� –0.52 1.22 1.74

108� –0.64 1.54 2.18

180� –0.94 1.60 2.54

CG-GC 36� –0.86 1.51 2.37

108� –0.66 1.43 2.09

180� –0.60 1.12 1.72

AT-CG 36� –0.73 1.38 2.11

108� –0.59 1.27 1.86

180� –0.81 1.25 2.06
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Fig. 6 Eigenvalues of states in the AT-AT, CG-CG and AT-CG base

pair combinations as a function of the distance along the helical axis

(at zero angle of rotation) and the rotation angle around the helical

axis (at the equilibrium axial distance). Lines are results from

SIESTA calculations, points are results from VASP calculations (see

text). In each case three states are included above and below the band

gap. The value of the distance or the rotation angle that correspond to

equilibrium configurations are indicated by vertical dashed lines

(there are five almost equivalent local minima in rotation). As in

Fig. 5, frontier orbitals are identified as the corresponding orbital of

one base only
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with the G sites for all the stretching modes, while the

LUMO orbitals are related to the C sites. However, as the

DNA becomes more elongated, the orbitals overlap even

less and become localized for high stretching modes. The

elongation to the overstretched form is achieved by

changing the dihedral angle configuration of the DNA

backbone, which leaves the local part of the orbitals

essentially intact. Note how the orbitals rotate and spread

out as the structure is being ovestretched, following the

rotation of bases.

We now turn to a discussion of the results for the hop-

ping matrix elements of Eq. 9. Our discussion here is rel-

evant to what happens when the occupation of a frontier

state is changed from complete filling (for the HOMO) or

complete depletion (for the LUMO), that is, the physics of

small amounts of hole or electron doping. In Table 2 we

give the values for e; t1; t2; t3 (see Fig. 2) for the two

frontier states of the unstretched poly(CG)–poly(CG) DNA

form. The hopping matrix elements for the HOMO state

involve only the G sites; those for the LUMO state involve

only the C sites. As a consistency check, we have also

calculated matrix elements for farther neighbors and found

those to be much smaller in magnitude. We have calculated

the values of t1,t2,t3 by repeating the same procedure as

above for the stretched forms of the poly(CG)–poly(CG)

DNA sequence. We note that if t2 = t3 = 0 electrons will

not be able to migrate along the DNA molecule even if t1 is

quite large, because at least one of the other two hops is

necessary for migration (see Fig. 2). From this simple

picture, it is evident that the conductivity will be deter-

mined by which matrix element dominates. Quantitatively,

the ‘‘bottleneck’’ hopping matrix element is given by

t ¼ max minðjt1j; jt2jÞ; jt3jð Þ: ð17Þ

In Fig. 8 we show the value of the ‘‘bottleneck’’ hop-

ping matrix element calculated as a function of stretching.

This indicates that hopping conductivity will dramatically

decrease by several orders of magnitude upon stretching

the molecule and that the hopping will decrease more from

stretching in the 3¢–3¢ mode than in the 5¢–5¢ mode. This is

due to the conformational changes induced by the different

stretching modes, described earlier.

Localization length

The significant dropping of the hopping matrix elements

upon stretching as described in the previous section is

indicative of electron localization with a weak amount of

disorder. To investigate this possibility in detail, we focus

on effects of stretching in the 3¢–3¢ mode. The evolution of

the density of HOMO states upon stretching is shown in

5’

3’

3’−3’ 5’−5’

5’

(b)

(c)

(a)

GC

G C

3’

Fig. 7 The DNA structures for the unstretched (top) and the different

amounts of stretching in the 3¢–3¢ and the 5¢–5¢ modes with features of

the frontier orbitals described by the blue (HOMO) and red (LUMO)

spheres (see text for details). For both modes the amount of stretching

is (a) 30%, (b) 60%, and (c) 90% relative to the unstretched structure,

which is the B-DNA form. The 3¢–5¢ orientations of the poly(CG)–

poly(CG) sequence are shown in the left panel at 90% stretching,

where the structure is easier to visualize

900 30 60

% stretching
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m
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(3)

(2)

(3)

(2) (2)
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(2)

(2)

(2)
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Fig. 8 The frontier state ‘‘bottleneck’’ hopping matrix elements as

given by Eq. 17 for the different types (3¢–3¢ or 5¢–5¢) and amounts of

stretching of poly(CG)–poly(CG) DNA. At each value of stretching,

the dominant hopping process is indicated in parenthesis

Table 2 Parameters for the on-site (e) and hopping matrix elements

(ti, i = 1,2,3), for the HOMO and LUMO states of unstretched

poly(CG)–poly(CG) DNA

HOMO LUMO

e (eV) 3.12 –0.09

t1 (meV) 14.0 –0.29

t2 (meV) 2.60 0.04

t3 (meV) 0.09 0.26
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Fig. 9; similar behavior is observed for the LUMO states.

The dramatic narrowing of the DOS width (equivalent to

reduced dispersion in a band-structure picture) is strongly

suggestive of electron localization [49], in this case

induced by stretching. This localization length is controlled

by the hopping elements t, since e is the same at each site.

For a more quantitative description, we show in Fig. 9

the localization length Li for each eigenstate for a 1500

base-pair DNA strand under different amounts of stretch-

ing. The value of L(i) for each state is obtained from Eq. 15,

with disorder strength c = 0.3 meV, which determines the

width of the gaussian given in Eq. 14. This disorder

strength is much smaller than the band width of the

unstretched DNA, but becomes comparable to the band

width as the molecule is stretched. The magnitude of such

variations in on-site energies is consistent with those

produced by the dipole potential terms, for instance, due to

the presence of a stray water molecule situated on the

substrate roughly 15 Å away from the DNA bases. We find

that changing the value of c by an order of magnitude

(either smaller or larger) does not affect the qualitative

picture presented here. Note that the localization length is

not a strict function of the energy, as it depends on the

disorder near where a given state happens to be localized.

As the molecule is stretched, the localization length

dramatically decreases until, for 60% stretching, the

eigenstates are completely localized on single base pairs.

The charge localization length as a function of DNA

stretching has been recently studied in the experiment of

Heim et al. [33]. This study focuses on k-DNA which has

an irregular sequence of base pairs, and can be compared to

our theoretical results for poly(CG)–poly(CG) recalling

that the frontier states even for a random sequence are

associated with those of the CG base-pairs. In the experi-

ment, ropes of k -DNA on a substrate are overstretched by

a receding meniscus technique. The DNA ropes in this

experimental setup are slightly positively charged, corre-

sponding to a depletion of a few electrons per 1000 base

pairs. We suggest that this situation is approximated by the

structures of dry and neutral DNA that we considered

above. Electrons were injected into the DNA and the

resulting localization length was measured by an electron

force microscope. For the unstretched DNA, the charge

was found to delocalize across the entire molecule,

extending over a length of several microns. On the other

hand, the charge injected into the overstretched DNA is

localized, extending over a few hundred nanometers only.

This is qualitatively consistent with the picture that emer-

ges from our theoretical analysis, and is even in reasonable

quantitative agreement: the degree of localization in

experiment, measured by the ratio of length scales going

from unstretched to stretched DNA structures, is approxi-

mately two orders of magnitude, while the same quantity in

our calculations, going from unstretched to 60% stretched

DNA is ~103.

Summary

We have described and implemented a multiscale method

to derive effective hamiltonian models that are able to

capture the dynamics of conduction and valence electrons

in stretched DNA, starting from ab initio, all-atom quantum

mechanical calculations. The ab initio simulations revealed

that the frontier states in the base pairs are related to only

one component of the pair. The purines were found to be

associated with the HOMO states while the pyrimidines

with the LUMO states. In the AT-CG combination the

frontier states are identified with those of the CG pair. For
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Fig. 9 (bottom) The density of electronic states for the HOMO state

stretched in the 3¢–3¢ mode. For comparison, the on-site energy

parameter, e, has been set to zero. (top) The localization length Li,

defined in Eq. 15, is computed for each eigenstate with disorder

strength c = 0.3 meV
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all combinations of bases and base pairs studied here, the

nature of these states was not affected by separation of the

bases or base pairs along different directions or rotation

along the helical axis.

Turning to the next length scale and the semi-empirical

calculations, we have calculated the ‘‘bottleneck’’ matrix

elements for electron hopping along the DNA molecule, as

a function of stretching. These show a significant decrease

with elongation of DNA, which is stronger for stretching in

the 3¢–3¢ mode than in the 5¢–5¢ mode. We were able to

show quantitatively that stretching of DNA dramatically

narrows the DOS width of frontier states. A small amount

of disorder produced by environmental factors will natu-

rally lead to localization of the electrons along the DNA.

Our estimate for the degree of localization, based on a

reasonable (and quite small) amount of disorder in the

on-site energies for the electron states, is in very good

agreement with recent experimental observations. This

provides direct validation for the consistency and com-

pleteness of the multiscale method presented here.
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